Knowledge-Independent Data Mining With Fine-Grained Parallel Evolutionary Algorithms

نویسندگان

  • Xavier Llorà
  • Josep M. Garrell
  • Ramon Llull
چکیده

This paper illustrates the application of evolutionary algorithms (EA) to data mining problems. The objectives are to demonstrate that EA can provide a competitive general purpose data mining scheme for classification tasks without constraining the knowledge representation, and that it can be achieved reducing the amount of time required using the inherent parallel processing nature of EA. Experiments were performed with GALE, a fine-grained parallel evolutionary algorithm, on several artificial, public domain and private datasets. The empirical results suggest that EA are competitive and robust data mining schemes that scale up better than non-evolutionary well-known schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Data Mining with Evolutionary Algorithms for Cloud Computing Application

With the rapid development of the internet, the amount of information and data which are produced, are extremely massive. Hence, client will be confused with huge amount of data, and it is difficult to understand which ones are useful. Data mining can overcome this problem. While data mining is using on cloud computing, it is reducing time of processing, energy usage and costs. As the speed of ...

متن کامل

Decentralized spatial data mining for geosensor networks

Advances in distributed sensing and computing technology offer new, reliable, and costeffective means to collect fine-grained spatiotemporal data. Conventional spatiotemporal data mining procedures, however, are based on centralized models of information processing, where sophisticated and powerful central systems collate and process global information. By contrast, decentralized spatial comput...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

Splitter: Mining Fine-Grained Sequential Patterns in Semantic Trajectories

Driven by the advance of positioning technology and the popularity of location-sharing services, semantic-enriched trajectory data have become unprecedentedly available. The sequential patterns hidden in such data, when properly defined and extracted, can greatly benefit tasks like targeted advertising and urban planning. Unfortunately, classic sequential pattern mining algorithms developed for...

متن کامل

Coarse grained parallel algorithms for graph matching

Parallel graph algorithm design is a very well studied topic. Many results have been presented for the PRAM model. However, these algorithms are inherently fine grained and experiments show that PRAM algorithms do often not achieve the expected speedup on real machines because of large message overheads. In this paper, we present coarse grained parallel graph algorithms with small message overh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001